Abstract: Matrix factorization is a fundamental characterization model in machine learning and is usually solved using mathematical decomposition reconstruction loss. However, matrix factorization is ...
Abstract: Matrix factorization is a central paradigm in matrix completion and collaborative filtering. Low-rank factorizations have been extremely successful in reconstructing and generalizing ...
Tensor Extraction of Latent Features (T-ELF). Within T-ELF's arsenal are non-negative matrix and tensor factorization solutions, equipped with automatic model determination (also known as the ...
Multiplication in Python may seem simple at first—just use the * operator—but it actually covers far more than just numbers. You can use * to multiply integers and floats, repeat strings and lists, or ...
Collaborative filtering generates recommendations by exploiting user-item similarities based on rating data, which often contains numerous unrated items. To predict scores for unrated items, matrix ...
Is this real life? Is this just fantasy? A growing number of scientists are suggesting that the idea that we are all living in a simulation may not be completely far-fetched. Simulation theory is the ...
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States ...
Python PyTorch (GPU) and NumPy (CPU)-based port of Févotte and Dobigeon's robust-NMF algorithm appearing in "Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization." ...